TABLE OF CONTENTS

CHAPTER	DESCRIPTION	PAGE NO		
	PART A NOTES	1		
	UNITS AND DIMENSIONS	2		
1	1.1 Dimensions And System of Units	2		
UNITS AND	1.2 Fundamental And Derived Units	2		
	1.3 Dimensional Consistency	5		
DIMENSIONS	1.4 Dimensional Equations	5		
	1.5 Conversion Factor	6		
	BASIC CHEMICAL CALCULATIONS	8		
2	2.1 Composition of Mixtures	9		
BASIC	2.2 Ideal Gas Laws And Its Applications	11		
	2.2.1 Dalton Law	13		
CHEMICAL CALCULATIONS	2.2.2 Raoult's Law	13		
	2.2.3 Henry's Law	14		
	2.3 Relationship Between Partial Pressure And Mole Fraction of Component Gas to Total Pressure			
3 Material	MATERIAL BALANCE WITHOUT CHEMICAL REACTION	20		
	3.1 Material Balance	20		
	3.2 Material Balance Without Chemical Reaction	20		
	3.3 Material Balance Around Unit Operations	21		
	3.3.1 Distillation	21		
BALANCE	3.3.2 Absorption	22		
WITHOUT	3.3.3 Extraction	22		
CHEMICAL	3.3.4 Drying	23		
REACTION	3.3.5 Evaporation	23		
REACTION	3.3.6 Crystallization	24		
	3.3.7 Mixing / Blending	24		
	3.3.8 Filtration	25		
	3.4 Material Balance With Recycle, Bypass And Purge Streams	25		
	3.4.1 Recycling	25		

|--|

	3.4.3 Bypassing	27		
	MATERIAL BALANCE INVOLVING CHEMICAL REACTION	36		
4	4.1 Concept of Limiting And Excess Reactants	36		
MATERIAL	4.2 Conversion And Yield	37		
BALANCE	4.3 Material Balance Involving Reactions	38		
INVOLVING				
CHEMICAL REACTION				
	ENERGY BALANCE	41		
	5.1 Heat	41		
	5.2 Heat Capacity	41		
	5.2.1 Relationship Between C_v And C_p for an ideal gas	42		
	5.2.2 Empirical Equations For Heat Capacity	43		
5	5.2.2.1 Heat Capacities of Gases at Constant Pressure	43		
ENERGY	5.2.2.2 Mean Molar Heat Capacities of Gases	43		
BALANCE	ICE 5.3 Phase Transitions			
-	5.4 Enthalpy Changes Accompanied By Chemical Reactions	44		
	5.4.1 Heat of Reaction	45		
	5.4.2 Heat of Formation	45		
	5.5 Hess's Law of Constant Heat Summation	45		
28		45		
	FUELS AND COMBUSTION	50		
	6.1 Fuels	50		
6	6.2 Types of Fuels	50		
FUELS AND	6.2.1 Liquid Fuels	50		
	6.2.1.1 Density	50		
COMBUSTION	6.2.1.2 Specific Gravity	50		
	6.2.1.3 Viscosity	51		
	6.2.1.4 Flash Point	51		
	6.2.1.5 Pour Point	51		

	6.2.1.6 Specific Heat	52
	6.2.1.7 Calorific Value of Fuels	52
	6.2.1.8 Sulfur	52
	6.2.1.9 Ash Content	52
	6.2.1.10 Carbon Content	53
	6.2.1.11 Water Content	53
	6.2.2 Solid Fuels	53
	6.2.2.1 Coal Classification	54
	6.2.2.2 Physical And Chemical Properties of Coal	54
	6.2.3 Analysis of Coal	54
	6.2.3.1 Proximate Analysis	55
	6.2.3.2 Ultimate Analysis	56
	6.2.4 Gaseous Fuels	57
	6.3 Combustion	57
	6.3.1 Principle of Combustion	57
	6.3.2 3 T's of Combustion	58
	6.4 Theoretical Oxygen Requirement	58
	Since	
7	PART B MULTIPLE CHOICE QUESTIONS	62
Multiple Choice Questions	LEVEL 1	63
8	LEVEL 2	74
9 Assignment	PART C ASSIGNMENT	88
B	UNSOLVED QUESTIONS	89
10		95
10 Formula	PART D FORMULA SHEET	95

Jite Since 1991

PART A: NOTES

U coac

Best IES | GATE

CHAPTER 1 UNITS AND DIMENSIONS

1.1 DIMENSIONS AND SYSTEM OF UNITS

A *dimension* is a physical specification of a system (length, time, etc). There are primary dimensions and secondary dimensions.

A *primary dimension* is one which is arbitrarily defined. For example, one dimension is length which has units of foot. The foot was defined as the physical length of a king's foot; a rather arbitrary definition.

A secondary dimension is one which is defined in terms of primary dimensions; e.g., volume (secondary) is defined in terms of a cubic length (primary).

Units give the magnitude of some dimension relative to an arbitrary standard. For example, when we say that a person is six feet tall, we mean that person is six times as long as an object whose length is defined to be one foot.

Why do we need Units?

Units are important for effective communication and standardization of measurements.

1.2FUNDAMENTAL AND DERIVED UNITS

- **Fundamental** dimensions / units are those that can be measured independently and are sufficient to describe essential physical quantities.
- **Derived** dimensions / units are those that can be developed in terms of the fundamental dimensions / units.
 - Force: Newton's third law states that force on an object is mass times acceleration

$$F = m \times a$$

Therefore, the unit of force (Newton) is the unit of mass times M (kg) times the unit of acceleration LT^{-2} (m / s²).

 Viscosity: The unit of viscosity can be determined from Newton's law for viscosity for a fluid between two plates separated by a distance L having a relative velocity V as in figure 1.1.

$$au = \mu V/L$$

In the above equation, τ is the shear stress on the plates, and has dimensions of force per unit area ML⁻¹T⁻², the velocity has dimensions of LT⁻¹ and distance between the plates has dimensions of L. Therefore, the viscosity has dimensions of $\tau L/V$, which is ML⁻¹T⁻¹.

• **Specific heat** The change in thermal energy ΔE is related to the change in temperature of an object ΔT as follows

$$\Delta E = mC\Delta T$$

In the above equation, ΔE has dimensions of energy ML^2T^{-2} , mass has dimension M and temperature has dimension Θ^{-1} . Therefore, the specific heat has dimension $L^2T^{-2} \Theta^{-1}$, or units (m²/s²/K).

Figure 1.1: The fluid flow between two plates separated by a distance L moving with velocity (<u>+</u> V/2) in the tangential direction

The following table shows the list of basic, derived and alternative units in SI systems:

Physical	Name of Unit	Symbol	Definition of Unit
Quantity		for Unit	
	Basic SI Units		
Length	Meter	m	
Mass	Kilogram	kg	
Time	Second	S	
Temperature	Kelvin	К	
Molar Amount	Mole	Mol	
			195
	Derived SI Units		Since 1991
			- SIL
Energy	Joule	J	kg . m² . s⁻² → Pa . m³
Force	Newton	N S	kg . m . s ⁻² → J . m ⁻¹
Power	Watt	W	kg . m ² . s ⁻³ → J . s ⁻¹
Density	Kilogram per cubic meter	chillie	kg . m ⁻³
Velocity	Meter per second		m . s ⁻¹
Acceleration	M <mark>eter per sec</mark> ond squared		m . s ⁻²
Pressure	Newton per square meter		N . m ⁻² , Pa
	pascal		
Heat Capacity	Joule per (kilogram . kelvin)		J . kg ⁻¹ . K ⁻¹
	Alternative Units		
Bes	-		
Time	minute, hour, day, year	min, h, d, y	
Temperature	degree Celsius	⁰ C	
Volume	litre (dm ³)	L	
Mass	tonne, ton (Mg), gram	t, g	

1.3 DIMENSIONAL CONSISTENCY

Dimensions and units must be handled consistently in any algebraic calculation. To be added, two quantities must have the same dimensions and units. (Adding a volume and a mass is guaranteed to be wrong.) The factors in a multiplication or division may have different units, and the combined quantity will have units of the product or ratio of the factors. Equations involving physical quantities must have the same dimensions on both sides, and the dimensions must be the correct ones for the quantity calculated. The units on both sides will usually also be the same, and must be at least equivalent and correct.

Verifying dimensional consistency is often called "checking the units," and is a powerful technique for uncovering errors in calculations. For purposes of checking consistency, dimensions or units may be considered algebraic quantities. Some examples of this procedure are:

• Density is defined as the ratio of mass to volume, and must have dimensions of mass / utesince (length)³, with corresponding units.

• Checking dimensions for the famous formula $E = mc^2$

```
(energy) = (mass)(speed)^2
(force)(length) = (mass)(length/time)^{2}
(mass)(acceleration)(length) = (mass)(length)^2 / (time)^2
(mass)(length/time)^{2}(length)=(mass)(length)^{2}/(time)^{2}
(mass)(length)^{2}/(time)^{2} = (mass)(length)^{2}/(time)^{2}
```

Hence, it is clear that the above equation is dimensionally consistence.

1.4 DIMENSIONAL EQUATIONS

A dimensional equation is one in which the units of measurement and their powers are used rather than their actual numeric values. For example, consider an object under constant acceleration: let u denote its initial velocity v denote its final velocity, a denotes the acceleration and t is the time between the initial and final points of time.

Then

 $v = u + a \times t$

The dimensional equation is

Process Calculation

$$[\mathsf{L}\mathsf{T}^{-1}] = [\mathsf{L}\mathsf{T}^{-1}] + [\mathsf{L}\mathsf{T}^{-2}][\mathsf{T}]$$

Where, L represents a dimension of length,

T represents a dimension of time M which does not appear here, would represent mass.

Only terms with the same dimensions may be added or subtracted.

1.5 CONVERSION FACTOR

For converting one set of units to another is simply to multiply any number and its associated units by ratios termed as *conversion factors* to arrive at the desired answer and its associated units.

Conversion factors are statements of equivalent values of different units in the same system or between systems of units used in the form of ratios.

E.g.

Express a speed of 50 kilometers per hour as meters per second

50 km/h =
$$\frac{50 km}{h} \frac{1000m}{km} \frac{1h}{60 \min} \frac{1\min}{60s} = 14 m/s$$

• Convert a concentration of 220 mg / dl to grams / liter

220 mg / dl =
$$\frac{220mg}{dl} \frac{1g}{1000mg} \frac{10dl}{l} = 2.20 g / l$$

Example 1.1 In a multiple effect evaporator system, the second effect is maintained under vacuum of 475 torr, find the absolute pressure in kPa.

Solution:
Absolute pressure = Atmospheric pressure - vacuum
=
$$760 - 475 = 285$$
 torr
Absolute pressure = $285 \text{ torr} \times \left(\frac{101.325 \text{ kPa}}{760 \text{ torr}}\right)$
= 38 kPa .

Example 1.2 Convert the 2 atm pressure into mmHg.

Solution:

